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Abstract. The effective pair potentialsφ(r) of liquid caesium for a wide range of density
are derived from experimental structure factors using the inverse method, which is based on the
integral equation theory and the molecular dynamics (MD) simulation. The results are discussed
in comparison with those obtained previously for liquid rubidium and with those obtained by
the pseudopotential perturbation theory. The density dependence ofφ(r) derived for liquid
caesium shows features in common with that for liquid rubidium: with decreasing density, the
repulsive part ofφ(r) becomes softer, its oscillation becomes smaller and then disappears and
the resulting attractive part grows longer ranged. It is shown by comparing the corresponding
states with the same scaled densities that the repulsive part of theφ(r) for caesium is softer
than that for rubidium.

1. Introduction

As is well known, the interionic interaction in metals, which determines the arrangement
of ions or the ionic structure, is the effective one in the sense that it contains the indirect
ion–electron–ion interaction due to the screening effect of conduction electrons and hence
depends on the density. Owing to this density dependence of the effective pair interaction,
the structure of liquid metals changes more markedly with varying density than that of
nonmetallic liquids, in which atoms or molecules interact through a density-independent
potential.

As for liquid alkali metals, there occurs the metal–nonmetal transition near the critical
point and consequently the cohesion mechanism of the system changes. At the ordinary
liquid density near the triple point, the effective pair potential of these metals can be obtained
by the pseudopotential perturbation theory based on the nearly-free-electron (NFE) model.
On the other hand, the system in the gas phase is composed mainly of neutral atoms
and molecules (and possibly some small numbers of ionized atoms and molecules and
resultant free electrons), and the interaction potentials between these atoms and molecules
are considered to be of the Lennard-Jones type. For the intermediate states near the critical
point, however, there is no reliable theoretical method to derive the effective pair potential
accurately. In fact, though the effective pair potentialφps(r) of liquid alkali metal obtained
by the pseudopotential theory can reproduce the experimental structures very well at high
densities near the triple point, it gives less satisfactory results at low densities near the
critical point. Under these circumstances, it is interesting to investigate how the effective
pair potential changes with the density, when the liquid alkali metal is expanded from the
triple point to near the critical point along the liquid–vapour coexistence curve. So far this
problem has not been solved.
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In this situation, one of the most effective approaches is the inverse method, in which
the effective pair potential is derived from experimental structure factors. This approach
was originally used by Johnsonet al [1], and later several revised methods were proposed.
More recently the predictor–corrector method for the inverse problem has been proposed by
Reattoet al [2]; this is considered as the most reliable method at present. In our previous
paper [3], we investigated the accuracy of this method and improved it in some points.
Using this method we obtained the effective pair potentialsφ(r) of liquid rubidium from
the triple point to the state near the critical point, and investigated the density dependence
of βφ(r) [4], whereβ = 1/kBT . The main results are as follows. Firstly, with decreasing
density, the repulsive part of the effective pair potentialβφ(r) becomes softer. Secondly
the first peak and the oscillation of theβφ(r) disappear at low densities. Thirdly, while
the depth of the minimum ofβφ(r) becomes much shallower when temperature increases
from 350 K to 900 K, it then remains almost unchanged from 900 K to 1700 K, and finally
becomes shallower again when the temperature is raised further from 1700 K to 2000 K. This
density dependence is qualitatively similar to that of the effective pair potentialsβφps(r)

obtained by the pseudopotential perturbation theory up to 1700 K but there appears an
evident discrepancy betweenβφ(r) andβφps(r) at 2000 K.

The purposes of this paper are as follows: (i) we derive the effective pair potentialφ(r)

from the experimental structural data of liquid caesium for a wide range of density using the
predictor–corrector method and investigate the density dependence ofφ(r), (ii) we compare
the results thus obtained with those for liquid rubidium explained above and (iii) we also
compare the results with the effective pair potentialφps(r) calculated by the pseudopotential
perturbation theory.

2. Method of calculation

In the integral equation theory, we can obtain the effective pair potentialφ(r) using the
closure relation given by

βφ(r) = g(r)− c(r)− ln g(r)− 1+ B(r) (1)

if we know the radial distribution functiong(r), the direct correlation functionc(r) and
the bridge functionB(r). Therefore in order to obtain the effective pair potential from the
experimental structure factorSexp(k) using equation (1) we need the experimental radial
distribution functiongexp(r), the experimental direct correlation functioncexp(r) and the
experimental bridge functionBexp(r). The gexp(r) can be obtained fromSexp(k) by the
Fourier transformation

gexp(r) = 1+ 1

2π2nr

∫ ∞
0
(Sexp(k)− 1)k sin(kr) dk (2)

wheren is the number density of ions. Using the Ornstein–Zernike relation,

g(r)− 1− c(r) = n
∫
(g(|r − r′|)− 1)c(r ′) dr′ (3)

together with equation (2), thecexp(r) can also be obtained from theSexp(k)

cexp(r) = 1

2π2nr

∫ ∞
0

(
1− 1

Sexp(k)

)
k sin(kr) dk. (4)

TheBexp(r), however, cannot be obtained directly fromSexp(k). In the predictor–corrector
method, we employ the bridge function of the hard-sphere systemBHS(r, η) as an initial
estimate forBexp(r), where the packing fractionη is determined so as to minimize the free



Effective pair potential of liquid caesium 3305

energy as is usually done in the modified hypernetted-chain (MHNC) approximation [5].
The condition [6] for the minimum free energy is given by∫

(gexp(r)− gHS(r, η))
∂BHS(r, η)

∂η
dr = 0 (5)

where gHS(r, η) is the radial distribution function for the hard-sphere system. Thus the
zeroth approximation for the effective pair potential is given by

βφ0(r) = gexp(r)− 1− cexp(r)− ln gexp(r)+ BHS(r, η). (6)

This approximation is called the predictor, and thenφ0(r) or BHS(r, η) are improved by the
following iterative procedure, which is called the corrector. (i) The simulation is performed
with φi(r) (= φ0(r) for the first run) andgi(r) is obtained, wherei stands for theith
step. (ii) Si(k) is obtained by Fourier transforminggi(r). (iii) ci(r) is obtained by using
equation (4), where the subscript exp is replaced byi. (iv) The revised bridge function
Bi(r) is given by

Bi(r) = βφi(r)− gi(r)+ 1+ ci(r)+ ln gi(r). (7)

An important point is that this bridge functionBi(r) must be exact for the input effective
pair potentialφi(r), and if this condition is not satisfied, this iterative procedure would not
converge. (v) The revised effective pair potentialφi+1(r) is then given by

βφi+1(r) = gexp(r)− 1− cexp(r)− ln gexp(r)+ Bi(r). (8)

The iterative process (i)–(v) is repeated until the difference|φi+1(r)−φi(r)| becomes smaller
than the desired accuracy and an accurate estimate forφ(r) can finally be obtained.

To carry out this predictor–corrector method, we must take into account the following
points.

(I) In general the experimental structure factorsSexp(k) are available only in a limited-
k region. The radial distribution function obtained by Fourier transforming the original
experimental data ofSexp(k) is nonzero in the small-r region, where thegexp(r) should
be zero physically. Therefore in order to obtaingexp(r) accurately, we have to extrapolate
Sexp(k) both to larger- and to smaller-k regions. For the smaller-k region, we extrapolate the
experimental data smoothly using spline functions toSexp(0) obtained from the isothermal
compressibility. As for the larger-k region, we perform the Fourier transform repeatedly
betweenSexp(k) andgexp(r) until the unphysical structure ofgexp(r) in the small-r region
is removed. In this way, we can get the ‘experimental’ structure factor for the wholek

region. In the following the notationSexp(k) is used to denote this extrapolated experimental
structure factor. Sincegexp(r) andcexp(r) are obtained from the sameSexp(k), thesegexp(r)

andcexp(r) satisfy the Ornstein–Zernike relation.
(II) As mentioned previously we must get the exact bridge functionBi(r) at each step

of the iterative procedure. To do so, we need first to obtain the data ofgi(r) andSi(k) very
accurately and then to get theci(r) from the thus obtainedSi(k). The values ofSi(k) in the
region whereSi(k) < 1 should be known very accurately to obtain the accurate values of
ci(r), since, as is seen from equation (4),ci(r) is the Fourier transform of(1− 1/Si(k))/n,
which contains the term 1/Si(k), so the region whereSi(k) � 1 contributes substantially
to the Fourier integral. Note that, near the triple point,Si(k) in the small-k region are
much smaller than unity. For this reason, we need the accurate data ofgi(r) in the large-r
region, and therefore we must perform the simulation for a large system. Of course, at a
low density near the critical point, the system size of the simulation must also be large,
since the long-range correlation is important.
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(III) Since gi(r) is obtained only forr < L/2, L being the side of the cubic cell
used in the simulation, the data must be extrapolated to larger distances. We employ the
Verlet extrapolation method [7], in which the Ornstein–Zernike relation is solved with the
conditions thatg(r) = gi(r) for r < rc and c(r) = cPY(r) for r > rc, wherecPY(r) is the
direct correlation function in the Percus–Yevick (PY) approximation andrc is the cutoff
distance ofgi(r).

3. Results and discussion

3.1. Experimental structural data
The structure factors for liquid caesium were measured by Winteret al [8] with neutron
scattering for eight different thermodynamic states from the triple point to near the critical
point along the liquid–vapour coexistence curve. To investigate the density dependence
of the effective pair potentials, we choose the experimental structural data at 323, 573,
773, 1373 and 1673 K, where the corresponding observed densities are 1.83, 1.68, 1.57,
1.21 and 0.96 g cm−3, respectively. These data are smoothed, extrapolated and modified as
explained in the previous section. The values ofSexp(k) andgexp(r) thus obtained are shown
in figures 1 and 2, respectively and are used as input data in the inverse method. Note that,
though these modified experimental structure factorsSexp(k) are slightly different from the
original experimental structure factors, the difference is within the experimental error. It
is necessary to introduce this slight modification so as to produce the reasonablegexp(r)

and cexp(r) which satisfy the Ornstein–Zernike relation. However, since the values of the
modifiedSexp(k) are the same as the original experimental data in the small-k region, the
difference mentioned above is not important for deriving the effective pair potential. With
decreasing density, the main peak ofSexp(k) becomes lower and broader and theSexp(k)

in the small-k region becomes larger, reflecting large density fluctuation. As for the radial
distribution functiongexp(r), with decreasing density, the main peak position remains almost
unchanged, while its height becomes lower. Note that, while functionsgexp(r) for rubidium
at 1700 K and 2000 K approach unity from above with damping oscillation [4],gexp(r)

for caesium oscillates around unity at 1673 K and approaches unity from above at 1923 K.
This behaviour reflects the large density fluctuation near the critical point and this feature
has also been discussed theoretically [9].

It is known that the structure of liquids at high densities is mainly determined by the
repulsive part of the pair potential and the attractive part has only a little effect on the
structure. Therefore it is not easy to derive the attractive part of the effective pair potential
from the experimental structure factor. As mentioned in the previous section, we need very
accurate structure data in the small-k region to obtain the accurate effective pair potential,
sincecexp(r) is very sensitive toSexp(k) in thisk region. Unfortunately the structure data near
the triple point employed in this paper are not accurate enough to obtain the attractive part
of the effective pair potential. In fact at 323 and 573 K, the effective pair potentials obtained
by the inverse method depend strongly on the method of smoothing the raw experimental
structure data in the small-k region. For this reason we will discuss in the following the
density dependence of the effective pair potentials at 773, 1373 and 1673 K, where theφ(r)

is not so sensitive to the experimental errors.

3.2. Effective pair potentials

We employ the constant-temperature molecular dynamics (MD) simulation [10, 11] in the
predictor–corrector method. We take 4096 atoms in a cubic cell with the periodic boundary
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Figure 1. The extrapolated and modified structure factorsSexp(k) of liquid caesium at various
temperatures.

Figure 2. The experimental radial distribution functionsgexp(r) of liquid caesium obtained by
the Fourier transform of the structure factorsSexp(k) shown in figure 1.

condition. The time step is 2.4× 10−15 s. The length of a side of the cubic cellL is
83.2, 90.7 and 98.0̊A, the cutoff distance of the effective pair potentialRc is 15.0, 15.0
and 15.5Å and the total number of simulation steps is 20 000, 110 000 and 160 000 at 773,
1373 and 1673 K, respectively. Note that theRc values used here are large enough that the
structure does not depend onRc.
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Figure 3. The bridge functions of liquid caesiumBi(r) at three different states obtained by the
inverse method, wherei = 1 at 773 K andi = 0 at 1373 K and 1673 K.

The iteration procedure converges very rapidly; it is repeated twice at 773 K, and only
once at 1373 K and 1673 K. The bridge functions obtained by this procedure are shown in
figure 3. At low densities, since the contribution from the bridge functionB(r) is small,
φ(r) does not depend so much on the approximation for the bridge function: indeed the
effective pair potential revised by the corrector is not much different from that of the zeroth
approximation. Therefore a few iterations are enough to achieve the convergence at these
temperatures.

The effective pair potentials of liquid caesium obtained by the inverse method at three
different states are shown in figure 4. The characteristic features of the density dependence
of these potentials are as follows: (i) with decreasing density, the repulsive part ofβφ(r)

becomes softer, (ii) the oscillation and the resultant positive maximum around 8Å of βφ(r)
are clearly seen at 773 K but disappear at lower densities and (iii) the attractive part of
βφ(r) becomes weaker and longer ranged as density decreases.

The feature (i) corresponds to the fact that the closest approach distance becomes shorter
and the peaks ofgexp(r) become lower and broader with decreasing density. It should be
noted here that the changes of both the closest approach distance and the amplitude of the
oscillation of gexp(r) are rather large and cannot be explained merely by the temperature
effect. To confirm this, we performed the MD simulation for the system at 1673 K using
the potentialφ(r) at 1373 K, and, in fact, obtained a longer closest-approach distance and
larger oscillation ofg(r) than the actual ones observed experimentally at 1673 K.

The wavelength of the oscillation ofβφ(r) at 773 K is about 5Å and this length
agrees well with the corresponding wavelength of the Friedel oscillation 5.3Å. The feature
(ii) suggests that the system starts to deviate from the NFE-like metallic state, since the
oscillation of the effective pair potential is a typical character of such a metallic state. In
order to get the density at which the positive maximum ofβφ(r) disappears, we calculated
the cexp(r) for all states using all the experimental structural data obtained by Winteret al
[8]. As a result we found that the first minimum of the direct correlation function disappears
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Figure 4. The effective pair potentialsβφ(r) of liquid caesium obtained by the inverse method.
The iteration procedure in the predictor–corrector method is done twice at 773 K and once at
1373 K and 1673 K.

between 973 K and 1173 K, and hence the first maximum of theβφ(r) disappears in the
same temperature region. Note that the relationc(r) = −βφ(r), which is exact forr →∞,
holds approximately even in ther region we are concerned with.

In order to check how and to what extent the weak and long-ranged attractive part of
φ(r) affects the ionic structure at a low density, we have performed the MD simulation
using φ(r) at 1673 K with the shorter cutoff lengthRc = 10.0 Å. The structure factor
thus obtained is clearly different fromSexp(k) particularly in the small-k region where the
calculated structure factor is significantly smaller thanSexp(k). Since the difference is much
larger than the experimental error, the weak and long-ranged attractive force derived by the
present inverse method, though rather small, is considered to be indispensable.

At a low density,Sexp(k) in the low-k region becomes large. It is well known that the
repulsive part ofβφ(r) plays a role of decreasing the structure factor in the small-k region,
while its attractive part plays the opposite role [12]. It has been said so far that the role
of the attractive force increases with decreasing density. In our results, although both the
repulsive and the attractive forces become weaker as the density decreases, the degree of
the softening of the repulsive force is so large that the effect of the attractive force becomes
relatively stronger. The features (i) and (iii) reflect the increase of the structure factor in the
long-wavelength region and we find that not only the weak and long-range attractive force
but also the soft repulsive force have important effects on the structure at low density.

3.3. Comparison with the effective pair potentials of rubidium

Since we have already obtained the effective pair potentials for liquid rubidium [4] for a
wide range of density and discussed their density dependence, it is interesting to compare the
results of caesium with those of rubidium. We also compare these effective pair potentials
obtained by the inverse method with those obtained by the pseudopotential perturbation
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Figure 5. The density dependence of the repulsive partβ{φ(r) − φ(rm)} for (a) Cs and (b)
Rb, whererm is the position of the first minimum of theφ(r). For comparisonφps(r) are also
shown.

theory. As for the characteristic features (i), (ii) and (iii) discussed in 3.2, the effective pair
potentials for liquid rubidium show the same density dependence as that for liquid caesium.

For closer comparison, the repulsive part of the effective pair potential defined as
β{φ(r) − φ(rm)} for caesium and that for rubidium are shown in figure 5(a) and 5(b),
respectively, whererm is the position of the minimum of theφ(r). The repulsive part from
0.5 to 1.5 is fitted by the inverse power functionA/rm, A being a constant, using the least-
squares method. For caesiumm =7.7, 6.8 and 5.6 at 773, 1373 and 1673 K, respectively.
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For rubidium,m =12.4, 9.6, 9.2 and 8.3 are obtained at 350, 900, 1400 and 1700 K,
respectively. Here the states of liquid caesium at 773, 1373 and 1673 K approximately
correspond to those of liquid rubidium at 900, 1400 and 1700 K, respectively, in the sense
thatn/nc andT/Tc, wherenc is the critical number density andTc the critical temperature,
of these corresponding states are almost equal. Thus it is concluded from the comparison
of the m values of these corresponding states that the repulsive part ofβφ(r) for liquid
caesium is softer than that for liquid rubidium. These results are in accordance with the
following facts. If we compare the experimental structure factorSexp(k) with that of the
hard-sphere system, with the hard-sphere diameter chosen so as to fit the height of the first
peak ofSexp(k), the agreement is very good for the rubidium except in the long-wavelength
region, where the lack of the attractive force in the hard-sphere model becomes serious. As
for caesium, on the other hand, it is difficult to fit the experimental structure factor using
the hard-sphere model, even for the position of the first peak. These facts suggest that the
effective pair potential of the caesium is softer than that of the rubidium.

Next we compareφ(r) with the effective pair potentialsφps(r) obtained by the
pseudopotential perturbation theory, where the empty core potential of Hasegawaet al [13]
and the local-field correction by Ichimaru and Utsumi [14] are used. The repulsive part
of βφ(r) for caesium is softer than the correspondingβφps(r) and the difference between
them becomes larger as the density decreases. The difference of the repulsive part between
βφps(r) andβφ(r) of rubidium is qualitatively similar to that for caesium, though the former
is quantitatively much smaller than the latter.

It is well known that dipole–dipole interaction between ion cores has an effect of
softening the pair potential [15, 16]. Since the ionic polarizability of caesium is larger
than that of rubidium, the softening effect is also expected to be larger for caesium than
that for rubidium. Following Monet al [16], we calculate the dipole–dipole interaction,
and investigate the density dependence of the effective pair potentials which include the
dipole–dipole interaction. As a result, we find that, though the dipole–dipole interaction
between ions makes the effective pair potential soft, the effect is too small quantitatively to
explain the results obtained by the inverse method.

It should be noted that the pair potentialφ(r) derived from the experimental structure
factors by the inverse method is, in general, an ‘effective’ potential which includes not
only a pair interaction but also many-body interactions and therefore theφ(r) is not always
comparable with theφps(r), which is purely a pair potential.

4. Summary

We have derived the effective pair potentials of expanded liquid caesium using the inverse
method and investigate their density dependence over a wide range of densities along the
liquid–vapour coexistence curve. The characteristic features of theβφ(r), which is the
effective pair potential scaled by temperature, are as follows. With decreasing density the
repulsive part ofβφ(r) becomes softer, the oscillatory behaviour ofβφ(r) disappears and
the attractive part of theβφ(r) becomes weaker and longer ranged. These features are
the same as those known for liquid rubidium. Quantitatively, however, the repulsive part
of βφ(r) is softer in caesium than in rubidium. It was also shown that the effective pair
potentials obtained by the present inverse method are softer than the corresponding ones
calculated by the pseudopotential perturbation theory and the difference between them for
caesium is larger than that for rubidium.
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